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Group is a bad category. It has kernels, cokernels, free objects, projective objects, injective
objects, short exact sequences, and even splitting, but these things are far from nice. Group
is like that one kid that hangs around the cool kids (the Abelian categories) and hopes that
some of their coolness will rub off, but instead it just looks like more of a loser than it
actually is.

1 Short Exact Sequences

So what is a short exact sequence? It’s not that different from the situation in any module
category you like:

1→ K → G→ H → 1

with kernel equal to image at each spot, noting that we use 1 here as the trivial group. We
have some immediate short exact sequences:

1 Z2 Z2 × Z2 Z2 1

1 Z3 S3 Z2 1

1 Z2 Q8 Z4 1

where the first maps are obvious, the maps in the second coming from the injection A3 E S3,
and the the third from Z(Q8) E Q8.

In fact, every short exact sequence is of the form

1→ N → G→ G/N → 1

We say that an extension[1] of a group H by a group K is a group G along with maps
i : K → G, π : G→ H such that

1→ K
i−→ G

π−→ H → 1

is exact.
It’s well-known that extensions in a module category are classified by the elements of first
Ext, but no such result has appeared for groups. It’s certainly clear that K × H is such a
group, so there are always extensions.
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2 Splitting

Much as we can talk about splitting sequences of modules, we can talk about splitting se-
quences of groups. Just as in the module theory, the natural place to start is with a section.

1 K G H 1i
π

r

with π ◦ r = idH .

In a module category, this is enough to say that G ∼= K ⊕H. We wash our hands and we’re
done with it. The interesting example presents itself in the category of groups, though:

1 Z2 D4 Z4 1

1 Z2 Z2 × Z4 Z4 1

π

r

π

r

In the first example, we’re modding out the reflection group. In the second, all the maps are
obvious. Even though both groups split the sequence, they’re not isomorphic. So in fact we
can say that there are multiple non-isomorphic splits of two groups.

The situation becomes much more clear once we have the following structure theorem:
If a short exact sequence of groups splits on the right, then it is isomorphic to the same
sequence containing a semidirect product: that is, the following diagram commutes

1 K G H 1

1 K K oϕ H H 1

i

id

π

θ

r

id

π

with the entire diagram commuting.
The action ϕ : H → AutK is defined by i(ϕh(k)) = r(h)i(k)r(h−1), a well-defined action
because the kernel is normal and i is an injection. Standard arguments about conjugation
show that this is a homomorphism into the automorphism group; in fact, what we see here
is an example of an internal semidirect product.
Now for the map θ, it’s best to first see that G = KH, the internal product of i(K) and
r(H). Take g ∈ G. π ◦ r ◦π(g) = π(g), so g(rπg)−1 ∈ Ker π = Im i. So g(rπg)−1 = i(k) =⇒
g = i(k)r(π(g)).
Now map g 7→ (k, π(g)). (Note that the choice of k is unique by injectivity.) This is a group
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homomorphism:

θ(g1)θ(g2) = (k1, π(g1))(k2, π(g2))

= (k1ϕπ(g1)(k2), π(g1)π(g2))

= (k1i
−1(r(π(g1))i(k2)r(π(g1))

−1), π(g1)π(g2))

= (k1i
−1(r(π(g1))i(k2)r(π(g1))

−1), π(g1g2))

= θ(g1g2)

This last, surprising statement, is because the i of the first component is

i(k1)r(π(g1))i(k2)r(π(g1))
−1

This is an element of i(K) with the property that

i(k1)r(π(g1))i(k2)r(π(g1))
−1r(π(g1))r(π(g2)) = i(k1)r(π(g1))i(k2)r(π(g2))

= g1g2

But this decomposition was unique, so i(k1)r(π(g1))i(k2)r(π(g1))
−1 is the K-component of

g1g2. So this is a homomorphism.
Now that we’ve put in all the work making sure that this thing actually does what we want it
to do, it’s trivial to see that it is an isomorphism. It’s injective: if g 7→ (1, 1), then π(g) = 1,
so g = i(1)r(π(1)) = 1. It’s also surjective: for some element (k, h) ∈ K oH, g = i(k)r(h)
has exactly the properties that we want.
Checking that this diagram commutes is diagram chasing, and I wouldn’t deprive you of that
fun. It’s covered in more detail in the article from which I got most of this section, Keith
Conrad’s “Splitting of a Short Exact Sequence of Groups”[2].

The other part of an argument like this is “what happens if the sequence splits the other
way”? The answer is actually the direct product. If we have a section r : G → K, defining
θ(g) = (r(g), π(g)), θ is an isomorphism and the following diagram commutes:

1 K G H 1

1 K K ×H H 1

i

id

π

θ

r

id

Again, the proof is standard. θ is an isomorphism by the universal property of the product.
Clearly it is injective, and it is surjective: i(k)π−1(h) ∈ G for any (k, h) ∈ K × H. The
diagram again trivially commutes.
For those of you seeking intuition, you can think that r being this map, it must have kernel
H. This means that H and K are both normal, and G is their internal product. Also, if you
believe that there are more semidirect products than direct products (and there certainly
aren’t less), then you believe that there are less “left sections” than “right sections”.
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3 Projectives, Injectives, and Frees

Free groups are characterized by the following universal property: If S is a set, G a group,
then ∃!φ : FS → G such that the following diagram commutes:

S G

FS

f

φ

Just as in the case of modules, the fact that we can define a map anywhere we want means
that free modules always split sequences: if we have

1→ K → G
φ−→ FS → 1

then we can just pick gs ∈ φ−1(s) and define r(s) = gs and extend this to a section via the
universal property. Note that although we have picked the morphism, any section gives rise
to an isomorphic semidirect product.

Any experience with homological algebra will grant exposure to the concept of a projective
object. This is a group P with the following (not universal) property: for any groups G,H,
with a surjective homomorphism π : G → H and a map φ : P → H, there is some (not
necessarily unique) map θ : P → G such that the following diagram commutes:

P

G H

θ φ

π

Notably, if we have a short exact sequence

1→ K → G
φ−→ P → 1

taking H = P, ψ = id in the diagram will give a section and therefore a split. So why don’t
we talk about projective groups? Because of this short exact sequence:

1→ K → FI → P → 1

where I is the indexing set formed by elements of P . Simply put, any free group surjects
onto any group, and if the target space is projective, the injective section r : P → FI makes
P a subgroup of a free group, and therefore free. So every projective object in Group is free.

The situation worsens for “injective” groups. An injective group Q in Group is an object
with the following (not universal) property: for any injection i : K → G, φ : K → Q, there
is a (not necessarily unique) map θ : G→ Q such that the following diagram commutes:

K G

Q

φ

i

θ
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We can actually rule out injectives very easily using our statements from above. First, note
that every injective must split every sequence that it’s the first component of, taking K = Q,
φ = id. Now consider G = Qo Aut Q, which has the associated short exact sequence:

1→ Q→ Qoid Aut Q→ Aut Q→ 1

The sequence splits, so we then have the following commutative diagram:

1 Q Qo Aut Q Aut Q 1

1 Q Q× Aut Q Aut Q 1

where all the maps are natural. But this means that the faithful action of Aut Q on Q is
trivial, so Aut Q = 1. A bit of basic group theory gives that this means that Q ∼= Z2 or
Q = 1, and Z2 isn’t injective in the category of Abelian groups, a full subcategory, so there’s
no way that it’s injective in the category of groups. So the only injective is 1.

4 Algebraic Topology

It turns out that just as with homological algebra, we can apply these statements to topolog-
ical spaces. (Joke about homotopical algebra.) One interesting application is to calculating
fundamental groups. Consider the following two spaces (draw the standard pictures) of T 2

and K, the torus and the Klein bottle. We actually have a continuous map from both of
them to S1, mapping into a medial circle. This induces the following short exact sequence
of groups for both of them:

1→ F1 → π1(T ), π1(K)→ F1 → 1

and, as these sequences split, we know that π1(T ), π1(K) ∼= F1oψ F1. These aren’t the same
group, because the actions of the right copy of F1 are different: Aut F1

∼= Z2. The Klein
bottle has the nontrivial action, and the torus the trivial one.

We can also mine some information from algebraic topology. The proof that subgroups of free
groups is generally proved topologically, but there’s one nice example which proves that rank
isn’t an additive invariant. Consider the kernel of the abelianization map φ : F{a,b} → Z2.
Kerφ is a subgroup of π1(S

1∨S1), so there’s a covering space associated to it. A homotopy of
this space – crushing a maximal tree – gives that it’s homotopic to ∨4S1, with fundamental
group F4.

5 Back to Extensions

Splitting isn’t enough to characterize extensions. Q8 is an excellent example: its only normal
subgroup is its center, but it sits in this short exact sequence:

1→ Z2 → Q8 → Z2 × Z2 → 1
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The fact that there’s no splitting is evident from the fact that Aut Z2
∼= 1, so if the sequence

did split it would be Abelian, but Q8 is non-Abelian.
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